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Abstract— In this paper1, we present a hierarchical multi-
resolutional approach for moving object prediction via
estimation-theoretic and situation-based probabilistic techniques.
The results of the prediction are made available to a planner
to allow it to make accurate plans in the presence of a dy-
namic environment. We have applied this approach to an on-
road driving control hierarchy being developed as part of the
DARPA Mobile Autonomous Robotic Systems (MARS) effort.
Experimental results are shown in two simulation environments.

I. INTRODUCTION

Over the past ten years, the National Institute of Standards
and Technology (NIST) has been involved in developing con-
trol architecture and supporting software algorithms to enable
autonomous navigation. We have used the 4D/RCS reference
model architecture to serve as the underlying foundation for
this effort [1], [2]. 4D/RCS is a hierarchical, distributed, real-
time control system architecture that provides clear interfaces
and roles for a variety of functional elements.

Under 4D/RCS, the functional elements of an intelligent
system can be broadly considered to include: behavior gen-
eration (task decomposition and control), sensory processing
(filtering, detection, recognition, grouping), world modeling
(store and retrieve knowledge and predict future states), and
value judgment (compute cost, benefit, importance, and un-
certainty). These are supported by a knowledge database,
and a communication system that interconnects the functional
elements and the knowledge database. This collection of
modules and their interconnections make up a generic node in
the 4D/RCS reference model architecture [3]. A generic node
(see Figure 1) is defined as a part of the 4D/RCS system that
processes sensory information, computes values, maintains
a world model, generates predictions, formulates plans, and
executes tasks. Each module in the node may have an operator
interface.

NIST’s work in autonomous vehicle navigation has most
recently been demonstrated in the DEMO-III eXperimental
Unmanned Vehicle (XUV) effort. This effort seeks to develop

1Commercial equipment and materials are identified in this paper in order
to adequately specify certain procedures. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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Fig. 1. A Real-time Control System (RCS) node.

and demonstrate new and evolving autonomous vehicle tech-
nology, emphasizing perception, navigation, intelligent system
architecture, and planning [10] and represents the state of
the art in autonomous driving. The most recent DEMO-III
experiments have demonstrated autonomous mobility in highly
static, wooded environments, where the only moving object
of interest is the autonomous vehicle itself. Objects in the
environment included rocks, trees, tall grass, paths, etc. This is
a much different environment than what would be encountered
during on-road driving, in which most of the objects in the
environment are highly dynamic (e.g., pedestrians, vehicles,
animals, debris, etc.).

Statistical methods for estimating obstacle locations using
statistical features have been proposed by other researchers
such as the Hidden Markov Models (HMMs) to predict obsta-
cle motion [11], Poisson distribution to describe the probability
of collision with obstacles [9], autoregressive models for one-
step ahead prediction of moving obstacles [5] or probability
of occupancy of cells in grid maps [8]. The principal disad-
vantages of these methods are that they are computationally
intensive thus precluding real-time implementations and per-
haps most importantly have only been implemented for 2D
polygonal environments.

Nagel [6] has performed some research on moving object
prediction during on-road driving based upon the concept
of generally describable situations, fuzzy logic, and situation
graph trees. However, based on the literature, Nagel has not
tried to project out what the next actions of the moving object
will be and has not assigned probabilities to those actions.
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Dickmanns [4] has performed some research on situation
assessment and intention recognition for on-road driving.

The work described in this paper is different than other
related efforts in that it introduces a novel way to perform
moving object prediction based upon a multi-resolutional,
hierarchical approach which incorporates multiple prediction
algorithms into a single, unifying framework. The lower levels
of the framework utilize estimation theoretic short-term predic-
tions based upon an Extended Kalman Filter (EKF) while the
upper levels utilize a probabilistic prediction approach based
upon situation recognition with an underlying cost model.

The paper is organized as follows: In Section II, we de-
scribe our 4D/RCS-based architecture for on-road driving and
describe the levels in the hierarchy that need to deal with
moving objects in the environment. In Section III, we describe
an estimation-theoretic approach that is employed in the lower
levels of the control hierarchy. In Section IV, we describe
the situation recognition and probabilistic approaches that are
used in the higher level of the control hierarchy followed by
the experimental results in Section V. Section VI provides the
conclusions and future research efforts.

II. ON-ROAD DRIVING HIERARCHY

The 4D/RCS design methodology attempts to define an
information representational architecture for all of the task
knowledge. This architecture is dependent on both the domain
knowledge of the task and the requirements to decompose and
structure the information in such a manner as to match the
human techniques of information management by “chunking”
and hierarchical decomposition. It does this by providing a
layering of the task activities by levels of abstraction or
detail and separating out at each level by subtask context, the
task control knowledge that represents the next appropriate
subtask action and its transitioning situational knowledge. It
then attempts to describe what world model states have to exist
for each transitioning situation to be true.

The overall approach is to analyze the driving tasks through
a discussion of a large number of scenarios of particular on-
road driving subtasks and to derive from these descriptions a
task decomposition tree representation of all the task activities
at various levels of abstraction and detail. From this task tree
we can organize the activities into a more rigorous layering by
the artifice of identifying an organizational structure of agent
control modules that are responsible for executing the different
levels of the task decisions. This use of separate executing
agents organized into an execution hierarchy provides a mech-
anism to formalize the task decision tree by assigning certain
decisions to particular agent control modules as seen in Figure
2. This creates well-defined sets of subtask commands from
each agent control module to its next level subordinate agent
control module, thus forcing us to group and label various
sets of related activities of the driving task with a context
identifier such as GoOn roadname TurnLeftOn roadname,
PassVehInFront, ChangeTo_LeftLane, etc. Each of
these identifiers is really a subtask goal command at different
levels in the execution hierarchy.

The task decision rules appropriate to each of these subtask
goal commands can be encoded within Finite State Machines
(FSMs). These rules use context relative situations as their
input conditions to cause the transitioning to the next output
action to accomplish the goal command. As an example, the
“PassVehInFront” FSM has as one of its input conditions the
situational assessment that “conditions good to pass”. This
situation being true will cause this rule to fire and send the
ChangeTo_LeftLane output command to its next lower
subordinate control module in order to go around the vehicle
in front. This situation is really a cost evaluated summation of
the present situation identification and the predicted evolution
of this into future situations describing the expected actions
of all of the moving objects.

The evaluation of each FSM transitioning situation is framed
by the architecture. As shown in Figure 2, the 4D/RCS
partitions the task into various levels of resolution or ab-
straction. This means that the situations being analyzed at the
higher levels are more abstract and look out much further in
time to decide on more general responses. For example, the
high level RouteSegment Manager might detect a slow
moving truck in the right lane a quarter of a mile ahead and set
the goal lane to the left lane of a four lane divided highway.
The DrivingBehavior Control Module might detect a
slower moving vehicle in front on a two lane undivided road
and determine that no oncoming vehicles pose a collision
risk, there are no pedestrians moving towards the road, the
vehicle in front is expected to continue driving normally down
the road, the vehicle behind is not expected to try to pass
own vehicle - and from all of these situations and predicted
situations evaluate the present situation as “conditions good
to pass” thus evoking the ChangeTo_LeftLane command.
The ElementalManeuver Control Module might make a
short-term estimation-theoretic prediction on the next position
and direction of a vehicle in close proximity to our goal path.

Thus, the 4D/RCS approach reduces the apparent complex-
ity that has to be resolved by partitioning the problem up so
that appropriate moving object prediction techniques can be
brought to bear at the proper level of the task decision process.
These moving object prediction techniques are elaborated on
in the following sections.

III. ESTIMATION-THEORETIC SHORT-TERM PREDICTION

Estimation-theoretic schemes using Kalman Filters (KFs)
are well established recursive state estimation techniques
where estimates the states of a system are computed using the
process and observation models [7]. The recursive nature of the
algorithm utilizes the system’s CPU more uniformly to provide
estimates without the latency resulting from batch processing
techniques. The (linear) KF is simply a recursive estimation
algorithm that provides minimum mean squared estimates
(MMSE) of the states of a linear system utilizing knowledge
about the process and measurement dynamics, process and
measurement noise statistics subject to Gaussian assumptions
and initial condition information. When these assumptions
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Fig. 2. 4D/RCS Multi-Resolutional Control Hierarchy for On-road Driving.

are satisfied, the estimates provided by the Kalman filter are
optimal. The extension of the linear Kalman filtering ideas to
a non-linear system is termed extended Kalman filtering.

The EKF is a linear estimator for a non-linear system
obtained by linearization of the nonlinear state and observation
equations. For any non-linear system, the EKF is the best
linear unbiased estimator with respect to minimum mean
squared error criteria. Within the on-road driving hierarchy,
short-term prediction of objects moving at variable speeds and

at given look-ahead time instants are predicted using the EKF.
For completeness, we present an EKF estimation cycle for
predicting the future position of a moving object. Consider
a system that can be described by a non-linear discrete-time
state transition equation of the form:

xk = f (xk−1,uk, k) + wk (1)

where uk is a known control vector, xk is the state at time
instant k, f (·, ·, k) is the non-linear function that maps the



previous state and control inputs to the current state.
The observations of the state(s) of this system are made via

a non-linear discrete-time observation equation of the form:

zk = h (xk, k) + vk (2)

where h (·, k) is the non-linear function that maps the current
state to observations. The process noise, wk and the measure-
ment noise, vk, are assumed to be Gaussian, uncorrelated and
zero-mean.

In an autonomous vehicle navigation context, the prediction
stage uses a model of the motion of the vehicle (a process
model having the form described in Equation (1)) to predict the
vehicle position, x̂(k|k−1), at instant k given the information
available until and including instant (k− 1). The state predic-
tion function f(·) is defined by Equation (1) assuming zero
process and control noise. The prediction of state is therefore
obtained by simply substituting the previous state and current
control inputs into the state transition equation with no noise.
The prediction of covariance is obtained as:

P(k|k−1) = ∇fxk
P(k−1|k−1)∇fT

xk
+ ∇fwk

Qk∇fT
wk

where ∇fxk
and ∇fwk

are the state and control Jacobians.
Once the state and covariance predictions are available,

the next step is to compute a predicted observation and a
corresponding innovation for updating the predicted state. The
predicted observation ẑ(k|k−1) is found by using the non-linear
relation (a observation model having the form described in
Equation (2)) and taking expectations conditioned on the first
(k − 1) observations such that

ẑ(k|k−1)
�
= E[zk|Zk−1]
= h(x̂(k|k−1))

The innovation vector and innovation covariance are given
by

νk = zk − ẑ(k|k−1)

Sk = ∇hxk
P(k|k−1)∇hT

xk
+ Rk

where ∇hxk
is the observation Jacobian.

The state estimate and covariance updates are:

x̂(k|k) = x̂(k|k−1) + Wk · νk

P(k|k) = P(k|k−1) − WkSkWT
k

where the Kalman gain matrix is given by

Wk = P(k|k−1)∇hT
xk

S−1
k

It should be noted here that the estimation-theoretic short-
term prediction approach does not incorporate a priori knowl-
edge such as road networks and traffic signage and assumes
uninfluenced constant trajectory.

IV. SITUATION RECOGNITION- AND PROBABILISTIC

PREDICTION-BASED MOVING OBJECT PREDICTION

At the higher levels of the control hierarchy, namely the
RouteSegment Manager and the DrivingBehavior
Manager, moving object prediction needs to occur at a much
lower frequency and a greater level of inaccuracy is tolerable.
At these levels, moving objects are identified as far as the
sensors can detect, and a determination is made as to which
objects should be classified as “objects of interest”. In this
context, an object of interest is an object that has a possibility
of affecting our path in the time horizon in which we are
planning.

Once objects of interest are identified, we use situation
recognition and probabilistic prediction algorithms to predict
we expect that object to be at various time steps into the future.
In these algorithms, we are typically looking at planning
horizons on the order of tens of seconds into the future with
plan steps at about one second intervals. At this level, we are
not looking to predict the exact location of the moving object.
Instead, we are attempting to characterize the types of actions
we expect the moving object to take and the approximate
location the moving object would be in if it took that action.
The approach to performing this prediction is exposed in
Figure 3 and is described as follows:

Fig. 3. Probabilistic prediction based on situation recognition.

1) Using a situation knowledge base, attempt to character-
ize the current situation(s) that the object of interest is
in based upon the type of object using pattern matching.

2) Based upon the identified situation(s), identify the per-
tinent actions that could result from being in that situ-
ation. A separate knowledge base is used to perform
this, which captures the association between discrete
situations and pertinent actions. If the moving object can
be characterized as being on more than one situation,
the union of all actions associated with each situation is
considered.

3) For each pertinent action, associate a probability that the
action will occur based upon an underlying cost model.
The cost model will contain costs that the moving object
will incur based upon the resulting state that the object



will be in one it complete the action and costs that the
moving object will incur according to the transition it
makes in between states (the action itself). An example
of a cost that the moving object may incur for occupying
a state includes being too close to another object. A cost
the vehicle may incur during the action is crossing over
a double yellow line or exceeding the speed limit. The
probabilities are roughly inversely proportional to the
costs, such that the highest cost action would result in
the lowest probability and vice versa.

4) Based upon the results of each pertinent action, go to
step 1 and attempt to classify each resultant state which
a situation within the knowledge base.

5) This process is repeated until we get to the planning
horizon that is appropriate to the level of planning within
the control hierarchy in which we are attempting to plan
with.

6) As time progresses and data comes in as to which action
the moving object took, the initial action probabilities
are updated such that the action that was taken now
has a 100% probability and all other branches of the
tree which correspond to actions that were not taken are
eliminated.

The costs mentioned in step 3 are not fixed but vary
depending on the perceived characteristics of the moving
objects. In addition to the steps that were described above,
a separate process is tracking the history of the moving object
and abstracting from that history the pertinent actions that
could help to infer pertinent characteristics of that object, such
as personality and intentions. For example, this process may
extract out information about the number of time the moving
object changes lanes, how often it exceeded the speed limit
by a certain amount, how closely it followed other vehicles,
and the standard deviation in its speed over a given time
interval. Utilizing this information, the system would assign
a personality level (roughly analogous to aggressive driving
levels) and would try to infer the intention of the object based
upon patterns of behavior. For example, if the vehicle was
perceived to have switched to the right lane (on a four lane
highway) three times in a short span of time, the vehicle may
have an assigned intention of desiring to get off at the next
exit ramp on the right hand side.

If the moving object is identified as being aggressive, it
would have a lower cost for lane changes, which would result
in a higher probability of them happening. If the moving object
has an assigned intent of getting off at the next exit ramp, the
cost for performing that action would be extremely low, again
raising the probability that it would happen. Other factors, such
as the type of car, also influence the probabilities. A perceived
red sports car may have a higher probability of exceeding the
speed limit than an old pickup truck.

V. EXPERIMENTAL RESULTS

Both of these prediction methods have been implemented in
two different simulation environments. The EKF approach has

been implemented in the OneSAF testbed (www.onesaf.com).
OneSAF is a composable, next generation computer gener-
ated forces (CGF) that represents a full range of operations,
systems, and control process from individual combatant and
platform to battalion level, with a variable level of fidelity.
OneSAF is able to represent moving objects and provide the
object’s location and velocity at any point in time, through Ap-
plication Programming Interface (API) calls. A user-interface
was built on top of OneSAF to display the predicted locations
of the moving objects.

Fig. 4. Estimation-theoretic short-term prediction.

In Figure 4, the triangle (�) represents the moving object
whose future location is to be predicted. The large circle in
front of the triangle is the area in which we are 50% confident
that the object will be in two seconds and the small shaded
circle is the area in which we are 99% confident that the object
will be in two seconds. For our implementation, we found
that the EKF provided reasonable predictions within a two
second horizon. A horizon greater than two seconds introduced
too much uncertainty to be useful for our autonomous driving
scenarios.

The situation-based probabilistic prediction approach has
been implemented in the AutoSim simulation package de-
veloped by Advanced Technology Research Corporation. Au-
toSim is a high-fidelity simulation tool which models details
about road networks, including individual lanes, lane mark-
ings, intersections, legal intersection traversibility, etc. Using
this package, we have simulated typical traffic situations (e.g.,
multiple cars negotiating around obstacles in the roadway, bi-
directional opposing traffic, etc. and have predicted the future
location of individual vehicles on the roadway based upon the
prediction of where other vehicles are expected to be.

At the point this paper was written, we have simulated a
handful of driving situations and have used approximately a
dozen costs to determine the probabilities of one action over
another. Current costs are incurred based on:

• proximity to other objects in the environment as a func-
tion of upon necessary stopping distance,

• exceeding or going below the speed limit by a given



threshold,
• changing lanes,
• not being in the right most lane,
• rapidly accelerating or decelerating, and
• changing lanes where double yellow lines in the road

exist, among other costs.
It should be emphasized that costs are not static numbers.

The cost that a vehicle incurs by taking an action is heavily
a function of the perceived personality and intention of the
moving object, as discussed in Section IV. Using these costs,
we were able to predict up to ten seconds into the future
at a rate of two predictions per second. A snapshot of the
implementation is shown in Figure 5, where the different
shades of dots correspond to the different probabilities for the
vehicle to be in that location five seconds into the future.

(a)

(b)

Fig. 5. Situation-based probabilistic prediction. (a) and (b) show a vehicle
performing a passing operation around stationary obstacles.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described a hierarchical, multi-resolutional
approach for moving object prediction during autonomous

on-road driving. The proposed approach currently employs
two different prediction methodologies that lend themselves
best to the constraints imposed by the planning horizon and
replanning rates of the planners at different levels of the
control hierarchy. An estimation-theoretic prediction approach
is used at the lower levels of the hierarchy that require a fast
replanning rate and where constraints on the environment do
not greatly affect the predicted location of the moving object.
A situation-based probabilistic prediction approach is used at
the higher levels of the control hierarchy that require slower
replanning rates and where constraints on the environment
greatly affect the probabilities of where the moving object
will be in the future.

Though both of the above approaches show great promise,
there is still much work to be done. For the short-term EKF
based approach, we need to build additional kinematic and
dynamic models corresponding to different types of vehicles
we perceive in the environment. Such models will allow for
more accurate predictions that are specific to the types vehicles
we encounter. For the situation-based probabilistic approach,
we need to encode additional situations (and pertinent actions
when encountering those situations), and a more elaborate cost
model. We are also investigating methodologies to integrate
these two approaches more tightly, such that the results of
one prediction approach can help to validate, at some level,
the results from the other prediction approach.
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